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The steepest descent method has a rich history and is one of the simplest and best
known methods for minimizing a function. While the method is not commonly
used in practice due to its slow convergence rate, understanding the convergence
properties of this method can lead to a better understanding of many of the more
sophisticated optimization methods. Here, we give a short introduction and discuss
some of the advantages and disadvantages of this method. Some recent results on
modified versions of the steepest descent method are also discussed.  2010 John
Wiley & Sons, Inc. WIREs Comp Stat 2010 2 719–722 DOI: 10.1002/wics.117

INTRODUCTION

The classical steepest descent method is one of the
oldest methods for the minimization of a general

nonlinear function. The steepest descent method, also
known as the gradient descent method, was first
proposed by Cauchy.1 In the original paper, Cauchy
proposed the use of the gradient as a way of solving a
nonlinear equation of the form

f (x1, x2, . . . , xn) = 0, (1)

where f is a real-valued continuous function that never
becomes negative and which remains continuous, at
least within certain limits. The basis for the method
is the simple observation that a continuous function
should decrease, at least initially, if one takes a step
along the direction of the negative gradient. The
only difficulty then is deciding how to choose the
length of the step one should take. While this is
easy to compute for special cases such as a convex
quadratic function, the general case usually requires
the minimization of the function in question along the
negative gradient direction.

Despite its simplicity, the steepest descent
method has played an important role in the devel-
opment of the theory of optimization. Unfortunately,
the method is known to be quite slow in most real-
world problems and is therefore not widely used.
Instead, more powerful methods such as the conju-
gate gradient method or quasi-Newton methods are
frequently used. Recently however, several attempts
have been proposed to improve the efficiency of the
method. These modifications have led to a newfound
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interest in the steepest descent method, both from a
theoretical and practical viewpoint. These methods
have pointed to the interesting observation that the
gradient direction itself is not a bad choice, but rather
that the original step length chosen leads to the slow
convergence behavior.

METHOD OF STEEPEST DESCENT
Suppose that we would like to find the minimum of a
function f (x), x ∈ Rn, and f : Rn → R. We will denote
the gradient of f by gk = g(xk) = ∇f (xk). The general
idea behind most minimization methods is to compute
a step along a given search direction, dk, for example,

xk+1 = xk + αkdk, k = 0, 1, . . . , (2)

where the step length, αk, is chosen so that

αk = arg min
α

f (xk + αdk). (3)

Here arg min refers to the argument of the mini-
mum for the given function. For the steepest descent
method, the search direction is given by dk = −∇f (xk).
The steepest descent algorithm can now be written as
follows:

Algorithm 1 Steepest Descent Method
Given an initial x0, d0 = −g0, and a convergence
tolerance tol
for k = 0 to maxiter do

Set αk = argmin φ(α) = f (xk) − αgk
xk+1 = xk − αkgk
Compute gk+1 = ∇f (xk+1)
if ||gk+1||2 ≤ tol then

converged
end if

end for
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The two main computational advantages of the
steepest descent algorithm is the ease with which a
computer algorithm can be implemented and the low
storage requirements necessary, O(n). The main work
requirement is the line search required to compute the
step length, αk and the computation of the gradient.

CONVERGENCE THEORY
One of the main advantages to the steepest descent
method is that it has a nice convergence theory.2,3

It is fairly easy to show that the steepest descent
method has a linear rate of convergence, which is
not too surprising given the simplicity of the method.
Unfortunately, even for mildly nonlinear problems
this will result in convergence that is too slow for
any practical application. On the other hand, the
convergence theory for the steepest descent method
is extremely useful in understanding the convergence
behavior of more sophisticated methods.

To start, let us consider the case of minimizing
the following quadratic function

f (x) = 1
2

xTQx − bTx, (4)

where b ∈ Rn, and Q is an n × n symmetric positive
definite matrix. Since Q is symmetric and positive def-
inite, all of the eigenvalues are real and positive. Let
the eigenvalues of the matrix Q be given by 0 < λ1 ≤
λ2 · · · ≤ λn. Note that the gradient of (4) is simply

g(x) = Qx − b. (5)

so we can write one step of the method of steepest
descent as

xk+1 = xk − αk(Qxk − b), (6)

where αk is chosen to minimize f (x) along the direction
−gk. A simple calculation (for the quadratic case)
yields the following equation for αk:

αk =
gT

k gk

gT
k Qgk

. (7)

To analyze the convergence, it is easiest to
consider the quantity f (xk) − f (x∗), where x∗ denotes
the global minimizer of Equation (4). Here we will
follow proofs that can be found in standard texts
such as2,3: We first notice that the unique minimizer
to Equation (4) is given by the solution to the linear
system

Qx$ = b. (8)

Consider the quantity:

f (xk) − f (x∗) = 1
2

(
xT

k Qxk − bTxk

)

−1
2

(
(x∗)TQx∗ − bTx∗

)

= 1
2

(
xT

k Qxk − (Qx∗)Txk

)

−1
2

(
(x∗)TQx∗ − (Qx∗)Tx∗

)

= 1
2

(xk − x∗)TQ(xk − x∗).

To compute a bound, one uses a lemma due
to Kantorivich, which can be found in Luenberger2.
In particular, when the method of steepest descent
with exact line searches is used on a strongly convex
quadratic function then one can show that:

f (xk+1) − f (x∗) ≤
[
κ(Q) − 1
κ(Q) + 1

]2

f (xk) − f (x∗). (9)

where κ(Q) = λn/λ1 is the condition number of the
matrix Q. A similar bound can be derived for the
case of a general nonlinear objective function, if we
assume that αk is the global minimizer along the search
direction.

EXAMPLE
Consider a simple example of a three-dimensional
quadratic function given by

f (x) = 1
2

xTQ − bTx, (10)

where

Q =




1 0 0
0 τ 0
0 0 τ2



 , b = −




1
1
1



 .

Using the steepest descent algorithm on this
example problem produces the following results. The
convergence tolerance was set so that the algorithm
would terminate when ||g(xk)|| ≤ 10−6. One can
clearly see the effects of even a mildly large condition
number as predicted by the error bound and as
seen in the number of iterations required to achieve
convergence in Table 1.
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TABLE 1 Steepest Descent

τ # iterations κ (A ) Bound

2 27 4 .3600

5 161 25 .8521
10 633 100 .9801

20 2511 400 .9950
50 15, 619 2500 .9984

κ(A) = λ1/λn.

SCALING
One of the most important aspects in minimizing real-
world problems is the issue of scaling. Because of the
way that many scientific and engineering problems
are initially formulated it is not uncommon to have
difficulties due to variables having widely differing
magnitudes. This can be due to many issues, but a
common one is that variables have different physi-
cal units that can lead to the optimization variables
having orders of magnitude differences. For example,
one variable could be given in kilometers (103 m) and
another variable might be in microseconds (10−6 s)
leading to a difference of nine orders of magnitude.
As a general rule of thumb, one would like to have
all the variables in an optimization problem having
roughly similar magnitudes. This leads to better search
directions as well as in deciding when convergence is
achieved. One fairly standard approach is to use a
diagonal scaling based on what a ‘‘typical” value of a
variable is expected to be. One would then transform
the variables by the scaling:

x̂ = Dx, (11)

where D is a diagonal scaling matrix. In the example
given above, one simple choice would be:

D =
(

10−3 0
0 106

)
, (12)

so that the components of x̂ have similar magnitude.

EXTENSIONS
Recently, several new modifications to the steepest
descent method have been proposed. In 1988, Barzi-
lai and Borwein4 proposed two new step sizes for
use with the negative gradient direction. Although

their method did not guarantee descent in the objec-
tive function values, their numerical results indicated
a substantial improvement over the classical steep-
est descent method. One of their main observations
was that the behavior of the steepest descent algo-
rithm depended as much on the step size as on the
search direction. They proposed instead the following
procedure. First one writes the new iterate as:

xk+1 = xk − 1
αk

gk. (13)

Then, instead of computing the step size by doing
a line search or using the formula for the quadratic
case 7, one computes the step length, αk, through the
following formula:

αk =
sT
k−1yk−1

sT
k−1sk−1

, (14)

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1. Using
this new formula, Barzilai and Borwein were able
to produce a substantial improvement in the perfor-
mance of the steepest descent algorithm for certain
test problems.

Subsequently, Raydan was able to prove con-
vergence of the Barzilai and Borwein method for the
case of a strictly convex quadratic function for any
number of variables and in 1997 he proposed a non-
monotone line search strategy due to Grippo et al.’s5

article, which guarantees global convergence6 for the
general nonlinear case. For an excellent overview on
this subject and further details see Ref 7.

CONCLUSION
The steepest descent method is one of the oldest
known methods for minimizing a general nonlinear
function. The convergence theory for the method is
widely used and is the basis for understanding many
of the more sophisticated and well known algorithms.
However, the basic method is well known to converge
slowly for many problems and is rarely used in prac-
tice. Recent results have generated a renewed interest
in the steepest descent method. The main observation
is that the steepest descent direction can be used with
a different step size than the classical method that can
substantially improve the convergence. One disadvan-
tage however is the lack of monotone convergence.
After so many years, it is interesting to note that this
method can still yield some surprising results.
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